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Introduction
Schizophrenia is a complex and chronic mental illness with 

psychotic, affective, and cognitive symptoms which impair the 
patients’ daily functions. Schizophrenia is also a multifactorial 
disorder that involves many neurotransmission pathways of the 
brain. Epigenetics is the structural adaptation of chromosomal 
regions, which may enhance or impair DNA transcription [1]. 
Multiple layers and players exist in epigenetics which are 
associated with human neurodevelopmental diseases [2]. In the 
recent years, studies had shown that epigenetic regulations such 
as DNA methylation and histone modification have contributed 
to the psychopathology of schizophrenia [3-8].

One of the more thoroughly studied candidate genes 
for schizophrenia is a brain-derived neurotrophic factor 
(BDNF) [9], which is involved in growth, survival, 
differentiation, and repair of neurons [10]. Another candidate 
gene for schizophrenia is mixed-lineage leukemia 1 (MLL1), 

a chromatin-remodeling factor which plays an important rôle 
in neurogenesis and regulation of the epigenetic maintenance 
of the pattern of homeotic gene expression [11, 12]. In 
animal models and postmortem brain tissues, MLL1 is 
found to be possibly involved in the cortical dysfunction of 
schizophrenia [13-15]. MLL1 is also a histone 3 lysine-specific 
methyltransferase that is important in hippocampal synaptic 
plasticity and regulating the activation of genes downstream 
of nuclear factor-kappa B and through the mediation of tumor 
necrosis factor-alpha [16].

Histones form octameric protein complexes called 
nucleosomes, and the DNA strand coils around them [17]. The 
configuration of nucleosomes and their short-range interactions 
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form an open (euchromatin) or condensed (heterochromatin) 
chromosomal configuration, either permitting or repressing 
gene transcription, respectively. Histone proteins can be 
modified with covalent additions of chemical groups to their 
N-terminal tails. These molecular tags regulate the specific 
location and tightness of coiling and thus the eventual 
chromatin configuration [18]. The most studied tags in 
relation to neurodevelopment are histone acetylations and 
methylations. Several proteins are responsible for these 
operations. An acetyl group to histone lysine side chains can 
be added by histone acetyltransferases or be removed by 
histone deacetylases (HDACs). Histone acetylation makes 
DNA more accessible for transcription and is usually enriched 
at enhancer elements and gene promoters to facilitate access 
of transcription factors [19]. Histones can also be methylated 
through histone methyltransferases (HMTs).

Epigenetic modifications of BDNF gene have been 
investigated in the past. Decreased expression of BDNF and 
increased DNA methylation of promoters of BDNF exons IV 
and IX have been found in the frontal cortex and hippocampus 
of patients with schizophrenia [20, 21]. Our previous study 
reported that BDNF exon IV H3K4me3 and blood MLL1 are 
associated with the psychopathology of schizophrenia [22]. 
In the postmortem brains, H3K4me3 is associated with 
transcriptional activation and is frequently localized at 
sites of active promoters; levels of H3K4me3 at glutamate 
receptor gene promoters are positively correlated with the 
corresponding RNAs in human cerebellar and prefrontal 
cortices [23]. In contrast, tri- and dimethylated forms of histone 
H3 lysines 9 and 27 are associated with inactive or repressed 
gene promoters [24]. H3K9me2 and H3K27me3 have also been 
reported to be related to the psychopathology of schizophrenia 
and mental retardation [13, 25-27]. In the hippocampus of 
mice, H3K9me2 levels are increased 1 h after fear conditioning 
and decreased 24 h after context exposure alone and contextual 
fear conditioning; mice with MLL deficiency display 
deficits in contextual fear conditioning relative to wild-type 
animals; fear learning also triggers increases of H3K4me3 
at BDNF promoter with altered DNA methylation and 
methyl-CpG-binding protein 2 (MeCP2) DNA binding [28]. 
MeCP2 is a CpG-binding protein that recruits HDACs to 
remove acetylation and repress gene transcription [29, 30] 
and can further enhance the repressive chromatin state by 
adding repressive H3K9me2 to HMT [31, 32]. Those data 
show that BDNF, MLL1, and histone modifications interact 
in a complex way.

Patients with schizophrenia are frequently treated with 
antipsychotic drugs, which can also affect epigenetic 
modifications of various genes [27, 33-35]. Clozapine, a 
second-generation (atypical) antipsychotic drug, increases 
the expression of MLL1 messenger RNA (mRNA) [13]. In 
the cerebral cortex of mice, clozapine treatment increases 
glutamate decarboxylase (GAD 1) H3K4me3 levels and MLL1 
occupancy [36]. The first-generation (typical) antipsychotic 
drug haloperidol can rapidly induce phosphoacetylation of 
H3 in the mouse striatum [27, 37, 38]. In the brains of mice, 

clozapine or sulpiride treatments, but not olanzapine or 
haloperidol, show dose-related increases in the cortical and 
striatal demethylation of hypermethylated reelin and glutamate 
decarboxylase 67 (GAD67) promoters [33]. Those studies 
show that antipsychotic drugs do affect different epigenetic 
mechanisms in various psychiatric disorders.

In this study, we intended to investigate the MLL1 mRNA, 
BDNF exon IV H3K9me2, and H3K27me3 levels in peripheral 
blood of patients with schizophrenia and healthy controls and 
to find the relationships between these biological markers 
and clinical presentations. We also compared the blood levels 
of expression of MLL1 mRNA, H3K9me2, and H3K27me3 
between patients with/without clozapine treatment.

Methods
Study participants

From November 2013 to October 2014, we recruited 
patients with schizophrenia and healthy controls and evaluated 
them with a semi-structured interview based on DSM‑IV 
criteria [39] and the Chinese Health Questionnaire-12 [40]. 
Study protocol was approved by the institutional review board 
of Chang Gung Memorial Hospital with the need of obtaining 
informed consents from study participants. The assessments of 
participants were done by the same senior psychiatrist.

We used the Posit ive and Negative Syndrome 
Scale (PANSS) to assess positive symptoms, negative 
symptoms, and general symptom severity of patients 
with schizophrenia [41, 42]. The antipsychotic drugs 
included clozapine 100–400 mg/day (n = 15), risperidone 
3–6 mg/day (n = 13), olanzapine 10–20 mg/day (n = 3), 
paliperidone 12 mg/day (n = 1), aripiprazole 30 mg/day (n = 1), 
haloperidol 15 mg/day (n = 1), sulpiride 800 mg/day (n = 1), 
and trifluoperazine 10 mg/day (n = 1). Patients were allowed 
to have combined use of benzodiazepines (i.e., lorazepam 
3 mg/day) or hypnotics (i.e., zolpidem 10 mg/day). Excluded 
from taking part in the study were participants with diseases, 
including cardiovascular, liver, and thyroid diseases, heavy 
smokers, or those with alcohol dependence.

Assessment of mixed‑lineage leukemia 1 messenger 
RNA

We used a PAXgene Blood RNA Tube (Qiagen, Venlo, 
The Netherlands) to collect 2.5 ml of peripheral blood. 
Extraction was done using the PAXgene Blood RNA Kit. 
We reverse-transcribed total RNA (1 μg) into cDNA with 
a High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems, Foster City, California, USA). We performed 
real-time polymerase chain reaction (RT-PCR) of MLL1 
expression using SYBR Green (Applied Biosystems). 
We used 5 μL of cDNA in a 0.5 μM of each primer (final 
concentration) and 20 μL of final volume. Primer pairs were 
ordered from Promega Biosciences (Fitchburg, Wisconsin, 
USA). We used the following PCR primers: 5’-AGA GTC 
CGA AGT CCC ACA AG-3’ and 5’-AGC TGA ATT TCG 
GTC AGA GC-3’ for MLL1. We did 45 cycles of quantitative 
PCR (Q-PCR) at 95°C for 5 s with a specific annealing 
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temperature of 60°C for 5 s and 72°C for 12 s. A 7500 Fast 
Real-Time PCR System (Applied Biosystems) was used. We 
examined the amplification specificity using a melting curve 
according to the manufacturer’s instructions. We analyzed the 
results with the 7500 Fast Real-Time PCR System Software 
version 1.4.1 (Applied Biosystems, Foster, California, 
USA).  In the same sample, the ratio of the RT-PCR 
product concentration to the glyceraldehyde-3-phosphate 
dehydrogenase concentration was calculated to show the gene 
expression level.

Chromatin immunoprecipitation
We obtained 10 ml of venous blood from each sample 

and analyzed levels of BDNF exon IV H3K9me2 (17-648, 
Mill ipore,  Burl ington,  Massachusetts ,  USA) and 
H3K27me3 (17-622, Millipore, Burlington, Massachusetts, 
USA). With minor modifications in accordance with Upstate 
Biotechnology’s protocol, we prepared one million cells 
for chromatin immunoprecipitation (ChIP) assay under 
each condition. The cells were treated for 10 min at room 
temperature to a final concentration of 1% formaldehyde. 
Glycine was added for 5 min at room temperature to a final 
concentration of 0.125 M. We washed and lysed the cells. 
DNA sonication was determined by agarose gel analysis 
to a size of 200–800 bp. The sonicated cell lysate was 
centrifuged at 13,000 × g for 10 min at 4°C. The supernatant 
containing the sheared chromatin was diluted in ChIP dilution 
buffer (0.01% sodium dodecyl sulfate [SDS], 1.1% Triton 
X-100, 1.2 mM ethylenediaminetetraacetic acid (EDTA), 
16.7 mM Tris-HCl, pH 8.1, and 167 mM NaCl plus protease 
inhibitor) five-fold. After dilution, precleared with protein 
A/G magnetic beads (LSKMAGA02, Millipore, Burlington, 
Massachusetts, USA). Chromatin was immune-precipitated 
overnight with antibodies for H3K9me2 (17-648, Millipore, 
Burlington, Massachusetts, USA) and H3K27me3 (17-622, 
Millipore). The immune complex was collected using protein 
A/G magnetic beads (LSKMAGA02, Millipore) and rotated 
at 4°C for 1 h. Sequence wash the protein A/G magnetic 
beads (LSKMAGA02, Millipore, Burlington, Massachusetts, 
USA)/antibody/chromatin buffer with low salt buffer (0.1% 
SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.0, 
500 mM NaCl) 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 
20 mM Tris pH 8.0, 150 mM NaCl), LiCl buffer (0.25 M 
LiCl, 1% Igepal, 1% sodium deoxycholate, 1 mM EDTA, 10 
mM Tris pH 8.0) and TE (10 mM Tris pH 8.0, 1 mM EDTA). 
The DNA was reverse cross-linked 4 h at 65°C. Protein was 
removed with protease K by incubation at 45°C for 1 h. 
The DNA was extracted with using ethanol and phenol–
chloroform. The DNA from the ChIP sample and input was 
resuspended in 10 μl and 20 μl TE buffer, respectively. For 
Q-PCR analysis, all target gene fragments were calculated in 
IP DNA and “input” DNA (for normalization). Q-PCR was 
performed using the SYBR® Green and AB 7500 thermal 
cycler systems. The PCR conditions were 35 cycles at 95°C 
for 10 min, then at 94°C for 20 s, at 60°C for 32 s, and at 72°C 
for 30 s. Relative changes in gene expression from RT-PCR 

experiments were analyzed using the 2−ΔΔCt method, and the 
final relative expression was expressed as a value relative to 
the vehicle control.

Data analysis
Mean ± standard deviation was used for expression of 

all results. Pearson’s correlations were calculated between 
PANSS scores, age, MLL1 mRNA, H3K9me2, and H3K27me3 
blood levels. Independent t-test was used to determine the 
significant differences between the blood levels of MLL1 
mRNA, H3K9me2, and H3K27me3 between healthy 
controls and patients with schizophrenia. We categorized 
patients with schizophrenia into clozapine treatment and 
nonclozapine treatment groups. The blood levels of MLL1 
mRNA, H3K9me2, and H3K27me3 between clozapine and 
nonclozapine groups were compared using the analysis of 
covariance (ANCOVA) with age adjustment.

All study data were computed using the Statistical 
Package for the Social Sciences software version 19 for 
Windows (SPSS, Inc., Chicago, Illinois, USA). The differences 
between groups were considered significant if p‑values were 
smaller than 0.05.

Results
We recruited 68 participants for this study. Among 68 

participants, 36 participants were patients with schizophrenia 
while 32 of them were healthy controls. Some demographic data, 
MLL1 mRNA levels, and total PANSS score had previously been 
published [22]. The ages of the patients were 38.7 ± 9.3 years, 
with body mass index (BMI) of 25.3 ± 4.5 kg/m2. The ages of the 
controls were 33.6 ± 5.9 years, with BMI of 22.3 ± 3.0 kg/m2. 
There were 11 men and 25 women in the schizophrenia group 
and 10 men and 22 women in the controls. The illness durations 
for the patients were 13.7 ± 6.9 years.

The mean blood levels of BDNF exon IV H3K9me2 were 
3.46 ± 3.16 relative expressions and 1.66 ± 1.76 relative 
expressions in patients with schizophrenia and healthy 
controls, respectively. Higher blood H3K9me2 levels were 
noted in patients with schizophrenia than in healthy controls 
using independent t-test (t = 2.849, p < 0.01). The Pearson’s 
coefficients between H3K9me2 level and age and total PANSS 
score were 0.098 (not significant) and 0.331 (p < 0.01), 
respectively.

For BDNF exon IV H3K27me3, the mean levels were 
1.89 ± 1.36 relative expressions and 1.49 ± 1.40 relative 

Table 1.  Brain-derived neurotrophic factor exon IV 
H3K9me2 and H3K27me3 blood levels (relative 
expression)

Schizophrenia patients (n=36) Controls (n=32)
H3K9me2 
levels

3.46 ± 3.16 1.66 ± 1.76**

H3K27me3 
levels

1.89 ± 1.36 1.49 ± 1.40

*p < 0.05; **p < 0.01.  
BDNF, brain-derived neurotrophic factor; H3K, histone 3 lysine
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expressions in patients with schizophrenia and healthy 
controls, respectively. There were no significant differences 
between patients with schizophrenia and healthy controls by 
independent t-test (t = 1.189, not significant). The Pearson’s 
coefficients between H3K27me3 level and age and total 
PANSS score were −0.036 (not significant) and 0.121 
(not significant), respectively. Those data are summarized 
in Table 1.

Using ANCOVA with age adjustment, there were 
no significant differences in MLL1 (F = 0.300, not 
significant), H3K9me2 (F = 0.007, not significant), and 
H3K27me3 (F = 0.632, not significant) between patients with 
clozapine treatment and nonclozapine treatment (Table 2).

Discussion
The most important finding in this study (Table 1) was that 

patients with schizophrenia had significantly higher BDNF 
exon IV H3K9me2 levels than healthy controls in peripheral 
blood (3.46 ± 3.16 vs. 1.66 ± 1.76 relative expressions, 
p < 0.01). H3K9me2 represses gene promoters [24], so it can 
potentially lower BDNF levels, as patients with schizophrenia 
have been found to have lower levels of serum BDNF [43]. 
There are only a handful of studies specifically investigating 
the roles of H3K9 methylations. H3K9me2 serves as a docking 
site for HP1 and other heterochromatin-associated proteins and 
is thought to be important for heterochromatin formation [44, 
45]. H3K9me2 represses gene promoters by recruiting DNA 
methyltransferase enzymes. Those DNA methyltransferase 
enzymes catalyze methylation of CpG dinucleotides, leading 
to recruitment of methyl-CpG-binding proteins, and form 
repressive chromatin-remodeling complexes [46]. In both 
postmortem parietal cortices and lymphocyte samples, 
a diagnosis of schizophrenia is a significant predictor 
for increased H3K9me2 levels [47]. A family history of 
schizophrenia, longer durations of illness, and worsening 
of specific symptoms are associated with increased HMT 
mRNA expression [47]. In the lymphocytes of patients 
with schizophrenia, significantly increased baseline levels 
of H3K9me2 are observed than those in healthy controls. 
The same study has also been found a negative correlation 
between age at onset of illness and levels of H3K9me2 [48]. 
Our finding is in line with both of those studies. Several other 
studies investigated the roles of H3K9 acetylation, frequently 
associated with a more expressive chromatin state. Using 

cultured lymphocytes from patients with schizophrenia and 
healthy controls, lower acetylation levels of H3K9K14 are 
found in lymphocytes from patients with schizophrenia, and 
treating the lymphocytes with HDAC inhibitor trichostatin A 
induces a smaller increase of H3K9K14 acetylation level in the 
schizophrenia group [49]. In rats suffering from chronic restraint 
stress, the downregulation of total and exon IV BDNF mRNA 
levels and a decrease in levels of acetylated H3K9K14, as well 
as an increase in MeCP2 binding at BDNF promoter IV, have 
been reported [50]. The aforementioned changes from chronic 
restraint stress in rats can be prevented by administration of 
olanzapine, another second-generation antipsychotic drug [50]. 
The levels of acetylated H3K9K14 at the promoter regions of 
eight schizophrenia-related genes in the postmortem prefrontal 
cortices from patients with schizophrenia and bipolar disorder 
and healthy controls are correlated with gene expression levels 
of glutamate decarboxylase 1 (GAD1), 5-hydroxytryptamine 
receptor 2C, translocase of outer mitochondrial membrane 70 
homolog A, and protein phosphatase 1E [27]. This study also 
pointed out that when compared with age-matched controls, 
significant hypoacetylation of H3K9K14 is detected in young 
patients with schizophrenia [27]. In the peripheral blood, 
patients with schizophrenia have remarkably lower baseline 
levels of acetylated H3K9K14, compared to patients with 
bipolar disorder [51]. Taken together, the methylation and 
acetylation statuses of H3K9 are involved in many aspects of 
schizophrenia.

Blood H3K27me3 is repressive like H3K9me2 [24]. 
H3K27me3 represses DNA transcription through interacting 
with Polycomb-group silencing proteins [52, 53]. But, in our 
study, no significant difference was found between patients 
with schizophrenia and healthy controls (Table 2). There 
have been few studies on H3K27. In the prefrontal cortices 
of patients with schizophrenia, lower methylation levels of 
eight CpG sites of GAD1 gene have been found in repressive 
chromatin region (H3K27me3), compared to those of controls. 
The methylation levels of GAD1 do not differ between patients 
and controls in the open chromatin (H3K4me3). Those 
findings suggest that histone modification also affects DNA 
methylation [54].

In our study (Table 2), we found no significant differences 
in blood levels of MLL1 mRNA, H3K9me2, or H3K27me3 
between clozapine and nonclozapine groups. There are few 
data on clozapine and repressive histone modifications, but 

Table 2.  Demographic data and blood lymphocyte mixed-lineage leukemia 1 mRNA and brain-derived neurotrophic factor 
exon IV H3K9me2 and H3K27me3 levels (relative expression) in patients with clozapine treatment and nonclozapine 
treatment

Age (years) BMI (kg/m2) Duration of 
illness (years)

PANSS 
score

MLL1 mRNA 
blood levels

H3K9me2 
blood levels

H3K27me3 
blood levels

Clozapine (n = 15) 38.5 ± 7.7 23.9 ± 3.4 16.7 ± 6.9 52.7 ± 17.3 0.58 ± 0.36 3.80 ± 3.58 2.31 ± 1.50
Nonclozapine (n = 21) 38.8 ± 10.5 26.4 ± 4.9 11.6 ± 6.2 49.5 ± 19.7 0.84 ± 0.66 3.22 ± 2.89 1.59 ± 1.19
*p < 0.05; **p < 0.01. No significant differences were found in all comparisons of items between patients with and without clozapine treatment using the 
ANCOVA with age adjustment. ANCOVA, analysis of covariance; BDNF, brain-derived neurotrophic factor; BMI, body mass index; PANSS, Positive and 
Negative Syndrome Scale; H3K, histone 3 lysine; MLL1, mixed-lineage leukemia 1
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there is more on transcription-activating histone modifications, 
such as H3K4me3 and H3 acetylations. In the cerebral cortex 
of mice, clozapine treatment can increase Gad1 H3K4me3 
and MLL1 occupancy but not haloperidol treatment [13, 36]. 
Chronic clozapine treatment in mice decreases the capabilities 
of metabotropic glutamate 2/3 receptor agonist to activate 
G-proteins in the frontal cortex, through the effect of HDAC2, 
as HDAC2 knockout mice are immune to that effect [55]. 
Chronic restraint stress in rats can decrease total and exon 
IV BDNF mRNA levels and H3 acetylation levels, and 
those abnormalities can be prevented by olanzapine, another 
atypical antipsychotic, but not haloperidol [50]. The effects 
of different antipsychotics on histone modifications warrant 
further investigation, but there have been few studies so far. 
It is worth noting that valproate, a mood stabilizer frequently 
used to augment the effect of antipsychotic drugs to treat 
patients with schizophrenia [56], has been found to be a HDAC 
inhibitor and is more widely investigated. Stem cells treated 
with valproate have increased BDNF mRNA expression at 
various time points [57]. In the lymphocytes isolated from 
patients with schizophrenia and bipolar disorder, valproate 
treatment induces a 383% increase in GAD67 mRNA, an 
89% increase in total H3K9K14 acetylation levels, and a 
482% increase in H3K9K14 acetylation attachment to the 
GAD67 promoter [51]. In the lymphocytes of 11 patients with 
schizophrenia and 4 patients with bipolar disorder, a 4-week 
valproate treatment can increase GAD67 mRNA expression 
although no remarkable change has been found in H3K9K14 
acetylation levels [51]. The application for knowledge in 
epigenetics can provide a new route to developing new 
therapeutic approaches to psychiatric disorders [58].

Study limitations
The readers are warned against over-interpret our study 

results  because this study has four limitations:
•    The sample size could be bigger.
•    The nonclozapine group consists of several antipsychotic 

drugs, and each of them could have different effects on the 
histone modifications.

•    The levels of blood BDNF mRNA and protein were not 
included. Since those could represent the final outcomes 
of epigenetic modifications, their inclusion would make 
interpretation of our data easier.

•    If funding is permitted, we could have verified the primary 
results in cell cultures or animal models. The verifications 
could strengthen the results of the investigation.

Summary
Blood BDNF exon IV H3K9me2 levels may be involved 

in the psychopathology of schizophrenia. More knowledge 
is needed before we can develop it to be a biomarker for 
schizophrenia.
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